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Physical Memory Management in a Network Operating System

Michael Newell Nelson

Abstract

This dissertation develops and measures methods of using large main memories to
provide high performance in a network operating system. The dissertation covers three
areas: file caching, virtual memory, and the interaction between the two. The work in
all three areas was done as part of Sprite, a new network operating system that is being
built here at Berkeley.

The first part of the dissertation presents results obtained through the development
of the Sprite file system, which uses large main-memory file caches to achieve high per-
formance. Sprite provides non-write-through file caching on both client and server
machines. A simple cache consistency mechanism permits files to be shared by multi-
ple clients without danger of stale data. Benchmark programs indicate that client
caches allow diskless Sprite workstations to perform within 0-8% of workstations with
disks. In addition, client caching reduces server loading by 50% and network traffic by
75%.

In addition to demonstrating the performance advantages of client caching, this
dissertation also shows the advantage of writing policies that delay the writing of blocks
from client caches to server caches and from server caches to disk. A measurement of 9
different writing policies on the client and 4 on the server shows that delayed-write pol-
icies provide the best performance in terms of network bytes transferred, disk utiliza-
tion, server utilization and elapsed time. More restrictive policies such as write-through
can cause benchmarks to execute from 25% to 100% more slowly than if delayed-write
policies are used.

The second part of this dissertation looks at the interaction between the virtual
memory system and the file system. It describes a mechanism that has been imple-
mented as part of Sprite that allows the file system cache to vary in size in response to
the needs of the virtual memory system and the file system. This is done by having the
file system of each machine negotiate with the virtual memory system over physical
memory use. This variable-size cache mechanism provides better performance than a
fixed-size file system cache of any size over a mix of file-intensive and virtual-
memory-intensive programs.

The last part of this dissertation focuses on copy-on-write mechanisms for efficient
process creation. It describes a simple copy-on-write mechanism that has been imple-
mented as part of Sprite which is a combination of copy-on-write (COW) and copy-on-
reference (COR). The COW-COR mechanism can potentially improve fork perfor-
mance over copy-on-fork schemes from 10 to 100 times if many page copies are
avoided. However, in normal use more than 70% of the pages have to be copied any-
way. The overhead of handling the page faults required to copy the pages results in



worse overall performance than copy-on-fork; with a more optimized implementation
forks would be about 20% faster with COW-COR than with copy-on-fork. A pure
COW scheme would eliminate 10 to 20 percent of the page copies required under
COW-COR and would provide up to a 20% improvement in fork performance over
COW-COR. However, because of extra cache-flushing overhead on machines with
virtually-addressed caches, pure COW may have worse overall performance than
COW-COR on these types of machines.
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CHAPTER 1

Introduction

The work presented in this dissertation was motivated by two recent changes in
technology: networks and large memories. The introduction of networks has led to a
move away from centralized timesharing operating systems towards network operating
systems. In these network operating systems each user has a personal high-
performance workstation and communicates with other users across a network. Data
that was once stored on a single set of disks in the timesharing systems is now distri-
buted amongst the disks of several workstations. In fact, many of the workstations do
not have any disk at all; the data for these diskless workstations is stored across the net-
work on the disks of other workstations.

The move towards network operating systems poses two problems: how to provide
users with high performance and how to allow users to easily share data. Performance
is a problem in network environments because each access of data may require both a
network access and a disk access. Network accesses will be required if the data that is
being accessed is stored on another workstation’s disk; both diskless workstations and
workstations that are sharing data may have to perform many network accesses. The
performance problem can be solved by using the large memories which have recently
become available. The memories can be used to cache recently accessed file data and
thereby eliminate many network and disk accesses.

The problem with using large memories as caches of file data is that it may make
file sharing difficult. In order for users that are sharing files to get consistent results
they will need to see a consistent view of the file data; if one user writes new data to a
file, then subsequent reads of the file should return the most recently written data, not
some old stale data. In timesharing systems, guaranteeing that each user sees a con-
sistent view of files is easy because the data is only stored in one place; all reads and
writes of file data happen to one central place so each user is guaranteed to see the same
view of the file. However, in a network operating system that caches data, the data for a
particular file may potentially be distributed around the network in many workstations’
memories.

This thesis describes the design, implementation, and performance of several tech-
niques that use large physical memories to provide sharing and high-performance in a
network operating system. The method that I used to perform this research was to
design, build and measure the Sprite file system caching mechanism and the Sprite vir-
rual memory system as part of the Sprite operating system [OCD88]. In addition to
measuring the mechanisms used daily in Sprite, I also measured a variety of alternative
mechanisms; these measurements provide the first quantitative comparisons between
many of the popular memory-management techniques.

One major contribution of this dissertation is an exploration of the tradeoffs in
designing and implementing a distributed file data caching mechanism. I will show that



by effectively utilizing large physical memories as caches of file data, workstations can
achieve high performance even without using a local disk; this high performance can be
achieved while providing all workstations with a consistent view of file system data and
without overloading networks or servert machines. In addition I will demonstrate the
importance of the writing policy: the policy that determines when dirty data is written
back to the server or the disk. I will show that writing policies have a major impact on
performance.

Another contribution of this dissertation is in the area of the interaction between
the file system and the virtual memory system. I will present a simple mechanism that
allows the file system cache to vary in size in response to the needs of the virtual
memory system and the file system. This variable-size cache mechanism provides
better performance than a fixed-size file system cache of any size.

The last contribution of this dissertation is an analysis of the tradeoffs in one par-
ticular area of virtual memory management: fast process creation. When a new process
is created, the process is given a copy of its parent’s address space. As users begin to
take advantage of large memories, the size of processes may increase, which will
increase the cost of copying an address space. A common method of improving the
performance of process creation is by using copy-on-write: pages in the address space
are initially shared by the parent and child; a page is not actually copied until one of the
processes attempts to modify it. In this dissertation I will describe a simple copy-on-
write mechanism that has been implemented as part of Sprite. I will show that in prac-
tice this and other copy-on-write mechanisms may actually give worse performance
than the simpler copy-on-process-creation schemes.

The rest of this chapter is divided into three sections. The first section credits the
other Sprite developers who helped me perform part of this research. The next section
provides an overview of the Sprite operating system, which I used to perform my
research. Finally, the last section presents an overview of the dissertation.

1.1. I versus We

The research presented in this thesis was done through the development and meas-
urement of the Sprite operating system. Sprite, which I will describe in the next sec-
tion, was not a one-person project; it involved 4 other people. All of the work that I
will present in this dissertation I did on my own except for the design of parts of the file
system. The file system was a joint project between myself and Brent Welch, where I
concentrated on the caching issues and Brent on the naming issues. In order to give
proper credit to the work of others, when I describe the design of the file system in
Chapter 3 and when I give the Sprite overview in the next section, I will use ‘‘we’’
instead of ¢‘I’’. In the rest of the dissertation where I describe work that I did on my
own [ will use *‘I"’.

+ Throughout this dissertation the term server will be used when referring to workstations
that have local disks and the term client will refer to workstations that wish to access data stored
on non-local disks (i.e. server machine’s disks).



1.2. Overview of Sprite

Sprite [OCDS88] is a new operating system implemented at the University of Cali-
fornia at Berkeley as part of the development of SPUR [Hil86], a high-performance
multiprocessor workstation. A preliminary version of Sprite is currently running on
Sun-2 and Sun-3 workstations, which have about 1-2 MIPS processing power and 4-16
Mbytes of main memory. The system is targeted for workstations like these and newer
models likely to become available in the near future, such as SPURs; we expect the
future machines to have at least five to ten times the processing power and main
memory of our current machines, as well as small degrees of multiprocessing. We hope
that Sprite will be suitable for networks of up to a few hundred of these workstations.

The interface that Sprite provides to user processes is much like that provided by
UNIX [RiT74]. The file system appears as a single shared hierarchy accessible equally
by processes on any workstation in the network (see [WeO86] for information on how
the name space is managed). The user interface to the file system is through UNIX-like
system calls such as open, close, read, and write.

Although Sprite appears similar in function to UNIX, we have completely re-
implemented the kernel in order to provide better network integration. In particular,
Sprite’s implementation is based around a simple kernel-to-kernel remote-procec ire-
call (RPC) facility [Wel86], which allows kernels on different workstations to request
services of each other using a protocol similar to the one described by Birrell and Nel-
son [BiN84]. The Sprite file system uses the RPC mechanism extensively for cache
management.

1.3. Thesis Overview

This dissertation covers three areas: file caching, virtual memory, and the interac-
tion between the two. The first part of the dissertation (Chapters 2 through 5) covers
issues in file caching. Chapter 2 introduces the problems in file caching and discusses
previous work in this area. This includes a discussion of an important set of trace-driven
analyses that measured file activity in several timeshared UNIX 4.2 BSD systems
[Ous85]. These simulations yielded two important results which motivated the Sprite
caching design. First, they demonstrated the potential performance improvements pos-
sible through caching; they found that even small caches can greatly improve perfor-
mance. Second, they demonstrated that the policy that is used to manage dirty data
may have a big impact on performance. The best policy is to delay write-backs, so that
data is initially written to the cache and then written through to the disk or server some
time later.

Chapter 3 presents the design of the Sprite file system. The three goals that were
the driving force behind the Sprite design were high-performance, consistency and sim-
plicity. Like many other systems, Sprite attains high-performance by using caches on
both client and server workstations. However, in order to achieve the highest perfor-
mance possible the Sprite file system delays the writing of file data to the server and to
disk. Under the Sprite writing policy, clients and servers do not write back file data
until up to 30 seconds after the data is created. This delayed-write policy allows higher
performance but also introduces extra consistency and recoverability problems which



do not occur in other systems.

In spite of the complexities brought about because of the delayed-write policies,
Sprite guarantees that workstations see a consistent view of the file system, even when
multiple workstations access the same file simultaneously and the file is cached in
several places at once. This is done through a simple cache consistency mechanism
that flushes portions of caches and disables caching for files undergoing read-write shar-
ing. The result is that file access under Sprite has exactly the same semantics as if all of
the processes on all of the workstations were executing on a single timesharing system.

The goal of this research was not just to build a distributed file system but also to
provide quantitative measurements of the tradeoffs in cache design. Chapter 4 presents
the results of running a collection of benchmark programs against Sprite and measuring
the performance. On average, client caching resulted in a speedup of about 10-20% for
programs running on diskless workstations, relative to diskless workstations without
client caches. With client caching enabled, diskless workstations completed the bench-
marks only 0-8% more slowly than workstations with disks. Client caches reduced the
server utilization from about 5-27% per active client to only about 1-12% per active
client. Since normal users are rarely active, my measurements suggest that a single
server should be able to support at least 30 clients. In comparisons with Sun’s Network
File System [San85] and the Andrew file system [Sat83], Sprite completed a file-
intensive benchmark 30-35% faster than the other systems. Sprite’s server utilization
was three times less than NFS but three times higher than Andrew.

In addition to determining the effect of client caching, I was also interested in
exploring the reliability/performance tradeoff: what effect does making data storage
more reliable have on performance? The writing policy has a big impact on the level of
reliability. Chapter 5 gives the result of running benchmark programs with 9 different
writing polices on the client and 4 on the server. The results of the benchmarks indicate
that in order to achieve good performance, either the client or the server must use a
delayed-write policy; the absolute best performance is when they both use delayed-
write policies. More restrictive policies such as write-through can cause serious perfor-
mance degradation: if write-through is used on the server and on the client then bench-
mark programs execute from 25-100% more slowly than if the server uses a delayed-
write policy.

The results from running benchmarks on Sprite show that large file system caches
provide the best performance. However, large caches may conflict with the needs of
the virtual memory system, which would like to use as much memory as possible to run
user processes. Chapter 6 describes a simple mechanism through which the virtual
memory system and the file system of each workstation negotiate over the machine’s
physical memory. This simple mechanism allows the file system cache to change in
size as the relative needs of the virtual memory system and the file system change.

The Sprite negotiation mechanism requires that memory be traded between the
virtual memory system and the file system. What effect does this trading have on sys-
tem performance? Is there a case where the trading is so intense that a small fixed-size
cache would be best? Chapter 6 presen:s the results from a complex benchmark that
causes large shifts of memory between the virtual memory and file systems. It shows



that the variable-size cache is never worse than any fixed-size cache. In the best case,
when a large cache is needed, the variable-size mechanism works very well. In the
worst case, when large amounts of trading are required, its performance is the same as
that of a fixed-size cache.

One of the features of the Sprite variable-size cache mechanism is that it allows
file- and virtual-memory data to be treated differently. For example, the virtual-
memory system can be given an advantage over the file system when the two are nego-
tiating over the use of physical memory. The later part of Chapter 6 provides measure-
ments of the impact of penalizing the file system on the performance of two file- and
virtual-memory intensive benchmarks. It shows that penalizing the file system gives
better interactive response than without a penalty while not degrading overall perfor-
mance.

Most of this dissertation focuses on the file system caching mechanism and the
interaction between the file system and the virtual memory system. However, I was
also interested in looking at one particular virtual memory problem: copy-on-write
mechanisms for fast process creation. Chapter 7 presents a simple copy-on-write
mechanism that I implemented as part of Sprite. The mechanism is a combination of
copy-on-write (COW) and copy-on-reference (COR). The COW-COR mechanism can
potentially improve fork performance over copy-on-fork schemes from 10 to 100 times.
However, in normal use, most of the pages have ta be copied anyway; the overhead of
handling additional page faults results in worse overall performance than copy-on-fork.
A pure copy-on-write scheme would eliminate 10% of the page copies required under
COW-COR, but may have worse overall performance than COW-COR on machines
with virtually-addressed caches, due to additional cache-flushing overhead. Even
highly optimized implementations can provide at best a 30% improvement in average
fork performance.

The final chapter of this dissertation, Chapter 8, offers some conclusions.



CHAPTER 2

File Data Caching

2.1. Introduction

File system caches have been used for many years on timesharing systems to
reduce the number of disk accesses. More recently they have begun to be used in distri-
buted file systems where there are caches on both servers and clients (see Figure 2-1);
the caches on server workstations are used to reduce disk traffic and the caches on
clients are used to reduce network traffic and server loading. This chapter examines the
previous work done in file system caching and the issues that must be addressed in
order to build an efficient distributed caching mechanism.

2.2. Server Caches

The purpose of a server cache is to improve client performance by reducing disk
accesses: data can be accessed from physical memory many times faster than from disk.
The most important metric in measuring the effectiveness of a server cache is the raffic
ratio: the ratio of physical disk accesses to logical accesses. Both reads and writes con-
tribute to the traffic ratio. Reads will require a disk access if the data being read is not
resident in the cache and writes will require a disk access if the modified data is written
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Figure 2-1. File caches in a distributed file system. When a process makes a file ac-
cess, it is presented first to the cache of the process’s workstation (‘‘file traffic’”). If
not satisfied there, the request is passed either to the local disk, if the file is stored there
(*‘disk traffic’’), or to the server where the file is stored (‘‘server traffic’’). Servers
also maintain caches in order to reduce their disk traffic.



to disk. How the write traffic impacts the traffic ratio depends on the writing policy
(see Section 2.4).

Although server caches have been implemented in several systems, the effective-
ness of server caches in these systems has not been analyzed in any detail. However,
there have been several attempts to predict the effectiveness of server caches by extra-
polating from traces of timesharing systems. A cache on a file server that services mul-
tiple clients should have behavior similar to that of a cache on a timesharing system
with multiple users; in both cases the cache is a centralized resource that is shared by
many users, where each client workstation represents a single user.

One study of server caching was a trace-driven analysis of file activity in several
timeshared UNIX 4.2 BSD systems [Ous85]. This study provided the main motivation
for the Sprite cache design and I will refer to it extensively throughout this chapter.
The systems studied by Ousterhout er al. were used for program development, text for-
matting, and computer-aided design. The study determined that for the traced systems
even small file caches are effective in reducing disk traffic, and that large caches (4-16
megabytes) work even better, cutting disk traffic by as much as 90 percent. The actual
improvement that can be gained from caching depends on the writing policy, which will
be explained below.

A study very similar to Ousterhout’s study was done by Kent at Purdue [Ken86].
He also did a trace-driven analysis of file activity in a timeshared UNIX 4.2 BSD sys-
tem, and his results were nearly identical to Ousterhout’s results.

One other study of disk caching was done by Smith, who used trace data from
IBM mainframes [Smi85]. Smith reported reductions in disk traffic similar to those
reported in Qusterhout’s study even though his data was much different. Unfortunately
Smith’s data did not distinguish read accesses from write accesses. Thus, he did not
determine the impact of the writing policy on the traffic ratio. Nevertheless, his results
indicate that caches from 2 to 8 megabytes are very effective, reducing disk traffic by
over 80 percent.

The results from the trace-driven analyses of timesharing traces indicate that
server caches should be very effective in reducing disk accesses. However, this has not
been verified by either measurement of existing systems or trace-driven analyses of
traces taken from networks of workstations.

2.3. Client Caches

Whereas the purpose of caches on server workstations is to reduce disk accesses,
the purpose of caches on client workstations is to reduce network accesses. If client
caches are as effective in reducing network traffic as server caches appear to be in
reducing disk traffic, then caches on clients could have a great impact on the perfor-
mance of clients, the load on file servers and the load on the network. A reduction in
the load on the network and the server will result in greater system scalability because
there can be more clients per network and more clients per server. The relation
between server load and system scalability was shown by Lazowska er al. [LZC86] in
a study of remote file access where they concluded that the server CPU is the primary
bottleneck that limits system scalability.



Caches can be used on clients for two purposes: to cache file data and to cache
naming information. Caching of file data reduces the number of read and write opera-
tions that require server accesses, and caching naming information can reduce the
number of open and close operations that require server accesses. In this section I will
concentrate on data caching, and in Section 2.5 I will explore the impact of name cach-
ing.

Systems that have implemented client caching have taken one of two approaches:
cache file blocks in memory (e.g. LOCUS [PoW85, Wal83] and Sun’s Network File
System (NFS) [San85]) or cache whole files on a local disk (e.g. Andrew
[Mor86, Sat85] and Cedar [SGN85]). The advantage of caching on a local disk is that
local disks are generally much larger than physical memories. However, caching in
main memory has numerous advantages over caching on a local disk. First, main-
memory caches permit workstations to be diskless. Second, data can be accessed much
more quickly from a cache in main memory than a cache on a local disk. Third, if the
studies done by Ousterhout or Kent are indicative of client cache performance, then
physical memories on client workstations are already large enough to provide high hit
ratios. As memories get larger, main-memory caches will grow to achieve even higher
hit ratios.

Although several systems have implemented client caching in various forms, none
of these systems has been analyzed to determine the impact of caching on system per-
formance. For example, Howard er al. [How88] showed that with caches on clients,
the load placed on the server by each client is very small. However, they did not deter-
mine what the load would have been if there had been no caches on the client worksta-
tions. The only analyses of the impact of client caching have been made with trace-
driven simulations from UNIX timesharing traces. These simulations have shown that
client caching can be effective in reducing network and server loading. Since the simu-
lations have depended on the writing policy and the cache consistency policy used, I
will not discuss the results of these simulations until after I have discussed the writing
policy issues and cache consistency policies.

2.4. Writing Policy

The performance advantages of caching depend on the policy used for handling
modified data blocks. In a distributed system, both the writing policy used on servers
and the policy used on clients can have a performance impact. Although different file
systems have used different writing policies, there have been no measurements of the
performance impact of the writing policy. However, results from four studies of UNIX
timesharing traces can be used to help predict the best writing policy for clients and
servers. In addition to the two previously-mentioned studies by Ousterhout and Kent
there are also studies that were done by Floyd [Flo86] and Thompson {Tho87]. Floyd’s
studies are nearly identical to Ousterhout’s studies so I will not mention them further.
Thompson’s study was a follow-on study to the study done by Ousterhout er al;
Thompson’s results are based on very detailed traces of UNIX timesharing systems.

The simplest policy for managing modified data blocks is to write them through to
the server and/or the disk as soon as they are placed into the cache. NFS uses write-



through on the server and RFS [BLM87] uses write-through on clients. The advantage
of a write-through policy is its reliability: little information is lost when a client or
server crashes. However, each write must wait for the data to be written to the server
and/or disk, which results in poor write performance. Also, Ousterhout’s study deter-
mined that about 1/3 of all file accesses are writes. This means that with a write-
through policy disk or server traffic cannot be reduced by more than about 2/3. Kent’s
study of UNIX file system activity confirmed this by demonstrating that with a write-
through policy the traffic ratio was over 27 percent.

An alternative policy to write-through is buffered write, which delays the write to
the server or disk until the last byte of a cache block is written. If a user writes data in
chunks smaller than the file system block size, then disk and network traffic can be
reduced. This is actually the policy that was used by the Ousterhout study when the
authors measured the effect of different writing policies. Thompson simulated this pol-
icy and discovered that over half of all write traffic caused by a pure write-through pol-
icy can be eliminated with buffered write. Thus even buffering a single block can have
a profound effect on writing performance.

The Andrew and LOCUS systems use a writing policy called write-back-on-close.
Under this policy, writes return as soon as the data is in the cache, but the data is writ-
ten back to the server when the file is closed. This results in better write performance
but causes processes to wait when they close the file.

The policy used by NFS clients is a combination of write-back-on-close and
write-back-as-soon-as-possible (ASAP). When data is written to the cache it is
scheduled to be written through to the server as soon as possiblet, but the write returns
immediately. When the file is closed, the client ensures that all of the file data has been
written through to the server. This should have similar performance to a pure write-
back-on-close policy except that the close of the file may not have to wait as long
because some of the dirty data may have already been written back when the file is
closed. Unfortunately, the Ousterhout study determined that most files are open only a
very short period of time: 75% of files are open less than 0.5 seconds and 90% less than
10 seconds. These short open times imply that many files may be not be open long
enough to allow their dirty blocks to be written back before the file is closed.

The best policy for performance is to delay the writing of blocks until the block is
ejected from the cache. A delayed-write policy has two advantages. First, writes and
closes can complete without waiting for data to be written through. Second,
Ousterhout’s study determined that 20 to 30 percent of new data is deleted within 30
seconds and 50 percent is deleted within 5 minutes. Under a delayed-write policy,
many blocks will never need to be written to disk at all; they will live and die in the
cache. Unfortunately, a delayed-write policy has reliability problems, since large
amounts of data can be lost during a system crash. UNIX uses a compromise solution
in which blocks are not written through to disk until they have been in the cache for 30
seconds. This gives better reliability than a true delayed-write policy, yet eliminates 20

1 NFS actually does not schedule the write-back of the block until the block is full.
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to 30 percent of server and/or disk writes.

A different type of policy that could be used is a combination of delayed-write and
write-through policies depending on the file type. This type of policy has not been
implemented in any system, but Thompson simulated two mixed policies. In one pol-
icy he varied from a 1 second delayed-write policy for editor temporaries up to full
delay for temporary files (he called this the mixed-policy), and in the other policy he
used buffered-write for all except temporary files (he called this the delay-temp policy).
The delay-temp policy provides a write traffic ratio slightly lower than the 30-second-
delay policy. The mixed-policy lies between the delay-temp policy and a S5-minute-
delay policy. Thus, by special-casing temporary files, clients can get write-traffic ratios
that are better than a 30 second delayed-write policy, but with higher reliability.

One thing to note about all of the UNIX studies is that their data does not include
writes of file meta-data: data that describes the contents of the file. In a UNIX file sys-
tem there are two types of meta-data: indirect blocks and file descriptor blocks. File
descriptors describe the attributes of the file and where the first few blocks for the file
are on disk. Indirect blocks are used to describe where the data blocks for large files are
kept on disk. Depending on the implementation of the file system, each write-back of
data may require writes of both indirect blocks and file descriptor blocks. For example,
if a write-through policy is used on a server, then each time that a data block is written
to disk for a large file both the file descriptor and the indirect block must be written to
disk as well; if the descriptor and indirect blocks are not written to disk, then during a
system crash the location of the data block may be lost. Thus, because of file meta-
data, write-through and similar types of policies may cause the traffic ratio to go up by
at least a factor of three.

2.4.1. Client and Server Writing Policies

In a system that contains both clients and servers, the best approach may be to use
different policies on the client and the server. For example, a policy that uses write-
through on servers and delayed-write on clients would result in no loss of data from a
server crash, yet allow clients to achieve very high performance. Unfortunately, there
have been no simulations or measurements of the various combinations of client and
server writing policies.

2.5. Cache Consistency

Allowing clients to cache files introduces a consistency problem. What happens if
a client modifies a file that is also cached by other clients? Can subsequent references
to the file by other clients return "stale" data? The definition of consistency that I will
use is that a client workstation sees a consistent view of a file if each read operation
returns the most recently written data for the file. The class of cache consistency algo-
rithms that I will examine in this section are all based on performing consistency on a
per-file rather than a per-block basis. This is the method used in most existing file sys-
tems and is practical because studies have shown that files are generally read and writ-
ten in their entirety [Ous85]. Per-file approaches are simpler and can potentially lower
the cost of consistency by requiring fewer consistency actions (one per file rather than
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one per block).

It is important to distinguish between consistency and correct synchronization.
The cache consistency mechanism cannot guarantee that concurrent applications per-
form their reads and writes in a sensible order. If the order matters, applications must
synchronize their actions on the file using system calls for file locking or other available
communication mechanisms. The purpose of cache consistency is to eliminate the net-
work issues and reduce the problem to what it was on timesharing systems.
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Figure 2-2. Sequential and concurrent write sharing. The figure on the top shows
sequential write sharing. C1 opens a file for reading, loads blocks into its cache and
then closes the file. C2 then opens the same file, modifies it and closes. When Cl
opens the file again it needs to make sure that the data that it loaded into its cache
from the first open is not stale; C2 could have overwritten data that C1 had previously
loaded into its cache. The figure on the bottom shows concurrent write sharing. Cl
opens a file for reading and before it closes it C2 opens the same file for writing; the
dark shaded region on the left shows the time where C1 and C2 are concurrently read-
write-sharing the file. After C2 opens the file C1 closes the file and then opens the file
for writing before C2 closes the file; the dark shaded region on the right shows the time
where C1 and C2 are concurrently write-write-sharing the file.
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There are two types of write sharing that can cause consistency problems: sequen-
tial write-sharing and concurrent write-sharing (see Figure 2-2). Sequential write-
sharing occurs when a file is shared but is never open simultaneously for reading and
writing on different clients. This can result in clients maintaining stale data for a file in
their cache after they have closed the file. In order to achieve consistency, the client
must be able to detect this stale data by the time it reopens the file.

The other type of sharing is concurrent write-sharing. This type of sharing occurs
when a file is open on one or more clients at the same time and at least one of the
clients modifies the file. In this case a client must be able to detect its stale data when-
ever it attempts to read data from the file.

The amount of file sharing that occurs has an impact on the importance of cache
consistency. Jim Thompson analyzed the amount of file sharing that occurred in a
UNIX environment [Tho87] and got several interesting results:

e  2.29% of the opens of files resulted in concurrent write-sharing.

e Only 2% of the bytes transferred were to files that were undergoing concurrent
write-sharing.

e Nearly all concurrent write-sharing occurred to a single file, the /etc/uimp file,
which keeps track of users logged on.

e Slightly more than 25% of all opens occur to files that are sequentially write
shared.

These results indicate that although concurrent write-sharing does happen, it is
very rare. In contrast sequential write-sharing happens fairly frequently (one out of
every 4 opens).

2.5.1. Previous Implementations of Cache Consistency

Each of the many network file systems in existence provides a different implemen-
tation and level of consistency. This section gives a survey of the current methods used
for cache consistency. All of the file systems that I will describe cache file data on both
client and server workstations.

2.5.1.1. NFS

NFS is based on stareless servers, which means that servers keep no information
that can be lost upon a server crash. This requires all state to be kept in non-volatle
memory (i.e. on disk). As a consequence of the stateless implementation, servers keep
no information about which clients have files open. This makes precise cache con-
sistency difficult. The result is that NFS does not provide exact cache consistency for
either type of sharing. If a file is undergoing concurrent write-sharing, then the out-
come is undefined. Users are warned to avoid this type of sharing. Sequential write-
sharing is handled using a probabilistic approach. Each client caches file version infor-
mation for three seconds. If when a file is opened, the local version information is less
than 3 seconds old, then the client believes that it has the most recent copy of the file.
Otherwise it will verify its version with the file’s server and flush its cache if necessary.
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2.5.1.2. Cedar

The Cedar file system [SGN85] provides consistency through the use of “‘immut-
able files.”” Each time that a file is modified, new version of the file is created. When
a file is opened, a user specifies which version of the file to use. If the user specifies a
version that the client does not have cached on its disk, then a new copy of the file is
loaded from the server. Once a client opens a given version of the file, it is guaranteed
to see a ‘‘consistent’’ view of that version because the file is immutable; if two clients
are concurrently write-sharing a file, they will both be accessing different versions of
the file. Note that Cedar does not satisfy my definition of cache consistency because
once a file is open reads are not guaranteed to return the most recently written data.

2.5.1.3. Andrew

Andrew [Mor86, Sat85] only supports sequential write-sharing. If two clients are
undergoing concurrent write-sharing, then clients will not see a consistent view of the
file. Sequential write-sharing is supported by guaranteeing that, once a file is closed, all
data is back on the server, and by ensuring that a client is notified by the server when-
ever the client’s cached copy becomes out-of-date.

2.5.1.4. LOCUS

LOCUS [PoW85, Wal83] supports both concurrent and sequential write-sharing.
It uses a complex mechanism based on passing tokens between workstations that are
accessing the file. There are two types of tokens: read and write. A client must possess
a token in order to access a file. Multiple clients may hold a read token if there is no
write token. If there is a write token, then no client may possess a read token and only
one client may hold the write token. When a token is released, the file that the token
pertains to must be written back to the server and invalidated from the cache. The algo-
rithm must ensure that all sharers of a file get a fair chance at accessing the file.

2.5.1.5. Apollo

The Apollo Aegis file system [LLHS8S, Lea83] uses file locking to guarantee con-
sistency; consistency is not guaranteed unless clients lock files before they perform read
or write operations. A file can be locked by multiple clients when there are only
readers, and by only a single client if the file is locked for writing. Caches are kept con-
sistent by bringing a file to a consistent state when a client locks a file. Before a client
reads or writes a newly locked file, all stale data is removed from the client’s cache and
the server makes sure that it has the most recent data from the file. The file system
guarantees that the server has the most recent data by writing back all modified data
whenever a file is unlocked. Like in NFS, stale data is eliminated by associating a ver-
sion number with each file. This version number is the time that the file was last
modified. It is stored in the server that stores the file and in each client that has pages of
the file stored in its memory. When a client locks a file, it compares its version number
for the file with the version number returned by the server. If the version numbers do
not match, then the client removes the file’s blocks from its memory.
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2.5.1.6. RFS

The RFS system [Rif86] handles both sequential and concurrent write-sharing.
Sequential write-sharing is handled by using a write-through writing policy and by con-
tacting the server whenever a file is opened to ensure that the cached copy is up to date.
RES handles concurrent write-sharing by disabling client caching when it occurs. Since
RES is based on write-through and hence must contact the server on every write, it can
detect on the first write to a file that concurrent write-sharing is about to occur. When it
detects this, it forces all reads and writes to go through to the server for the file that is
being shared.

2.5.1.7. V Storage Server

The V Storage Server at Stanford [ChR85] provides multiple approaches to con-
sistency. One approach is called T-consistency and is used for immutable files. The
data pages read from an immutable cached file are consistent with some version of the
file, either the current version or a version that is at most T milliseconds out of date.
Each client polls the server of cached files every T milliseconds to determine if its
cached files are up to date. The other approaches to consistency rely on block- or file-
level locking.

2.5.2. Verifying Consistency

All of the consistency mechanisms that I have described require that a client be
informed when a cached copy becomes out of date. This can be done in two ways: the
client can ask the server about the state of the file before it begins using it, or the server
can inform the client when the client’s cached copy becomes out of date. The first
approach generally requires that the server be contacted whenever a file is opened. This
has the advantage over the second approach that it does not require that clients use local
name caching; the server can do all name lookups for the client. However, because the
second approach allows opens to happen locally, it offloads the server and the network,
and decreases the amount of time that it takes for a client to open a file. Most systems
verify consistency when a file is opened or locked. The Andrew file system initally
verified consistency when a file was opened, but, after discovering that their servers
were becoming seriously overloaded, they changed to use the second approach
[(Howg8].

2.6. Trace-Driven Analyses of Client Caching

Jim Thompson used UNIX traces gathered from a single timeshared machine to
perform a trace-driven simulation of the impact of client caching on performance
[Tho87]. In his simulations every user on the timesharing system represents a different
client. His measurements depend on which of 5 cache consistency algorithms are used;
all of his algorithms provide consistency for both concurrent and sequential write-
sharing. One of the cache consistency policies that Thompson simulated is the Sprite
policy, which I will describe in the next chapter; I will examine his results in more
detail after I describe the Sprite policy (see Section 3.3.4.2).
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Thompson used two metrics to measure the impact of client caching. One is the
miss ratio, which is an indication of the effect of client caching in reducing server
interactions. The other metric is the transfer ratio, which reflects both server load and
network bytes transferred for all types of client requests including reads, writes and
opens. Thompson’s results indicate that, depending on the cache consistency policy
used, client caching can cut the miss ratio to 5-30 percent and lower the transfer ratio to
23-45 percent. Thus, client caching can potentially make clients run up to 20 times as
fast and reduce server and network loading by more than a factor of 4. However,
Thompson’s studies are merely an indication of the effect of client caching on perfor-
mance. The actual impact will depend on the fraction of time that each client spends
doing file system operations.

2.7. Summary and Conclusions

This chapter has explored the important issues in file data caching and its impact
on performance by looking at previous work done in this area. Because there has been
little measurement of the impact of file caching on real systems, the impact of caching
on performance can only be predicted by using the results of trace-driven simulations of
data taken from timesharing systems (e.g. from UNIX). The simulations show that
caches on client and server workstations can potentially have a large impact on perfor-
mance; the caches on servers can reduce the number of disk accesses, and the caches on
clients the number of server accesses. However, the simulations can only predict the
impact of caching on performance; the actual impact of caching on performance must
be determined by measuring a real system.

One important factor when designing a caching mechanism is the writing policy.
In a system that uses both client and server caching, the writing policy on both the
client and the server is important. Unfortunately, there have been simulations of writ-
ing policies that have looked at either the server’s policy or the client’s policy, but not
both together. Simulations indicate that the most effective writing policy is the
delayed-write policy, which provides the lowest nurrber of disk and server accesses and
the smallest delay to user processes. However, delayed-write policies are also the least
reliable policies.

Another important factor to consider when designing a file system that uses client
caching is the cache consistency policy. In order to allow users to share files as easily
in a distributed system as they once could on timesharing systems files must be kept
consistent. However, most current distributed systems do not provide the same level of
consistency that was available in timesharing systems; some do not provide con-
sistency at all and others do not handle the case when a file is being concurrently write-
shared.

In summary, previous work in the area of file data caching has been lacking in
several important areas. First, there has not been any measurement of real systems; all
results have been obtained through trace-driven simulation. This goes for analyses of
caching performance, the effect of writing policies and the impact of cache consistency.
Second, there has not been any analysis of writing policies where both the client and the
server policies have been taken into account. Finally, most systems do not provide
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strong enough consistency. The next three chapters address these areas by presenting
the design and measurement of the Sprite file system.
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CHAPTER 3

Sprite File System Caching

3.1. Introduction
We had four main goals in mind when designing the Sprite caching mechanism:

e To build a high-performance file system for both clients with disks and clients
without disks.

e  To gain insight into the tradeoffs involved in building a caching mechanism.

e To maintain UNIX semantics including supporting all normal user-level file sys-
tem operations.

e  To keep things as simple as possible.

From the results given in the previous chapter, it was evident that the way to attain
the highest-performance file system was to use large file data caches on both clients and
servers. In addition, non-write-through caching on clients was clearly the method to
use to attain the highest possible writing performance; we chose to use a 30-second
delayed-write policy like the one used in the original versions of UNIX.

Although it was clear that caching was necessary to attain high performance, it
was not clear whether caches on clients were absolutely necessary; maybe caches on
servers would be enough. If client caches could be eliminated, then many portions of
the file system could be simplified; for example, there would be no cache consistency
problems. I was interested in measuring the impact of caching on diskless client perfor-
mance, network loading, and server loading. In order to allow these measurements to
take place the Sprite file system can disable client caching. This ability to turn off
caching is also used as part of the Sprite cache consistency algorithm.

In addition to providing clients with high performance, we also wanted to provide
the same view of file data to users of the Sprite distributed file syst=m at that given by
timesharing UNIX; this includes providing the same user-level file system operations
that are supported by UNIX (see Table 3-1 for a list of file system operations supported
by Sprite). On timeshared UNIX, all the files and processes are on 2 single machine, so
each read returns the most recently written data; thus, users do not have to take any
explicit actions such as file locking in order to ensure data consistency. This allows
users to easily share file data without worrying about inconsistencies. In order to allow
easy sharing in Sprite, we provide a simple cache consistency mechanism that keeps
caches consistent both for concurrent and sequential write-sharing.

A high-performance distributed file system, especially one that maintains cache
consistency, can potentially be complex. However, during the implementation of the
file system, we tried to make design decisions that would allow us to simplify the
implementation without sacrificing performance or consistency. One major simplifying
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Sprite User-Level File Svstem Operations

Operation Action
open Open a file given a name.
close Close a file.
read Read data from a file.
write Write data to a file.
get attributes | Get the attributes of a file such as access times, file size
and permissions.

Table 3-1. User-level operations supported by the Sprite file system. There are other
operations supported by Sprite (such as flock) but they are not relevant to the caching
issues described in this chapter.

design decision was that we decided to do no local name caching; all naming operations
on files (e.g., open) and all closes of files must go through to the server of the file. This
simplified the file system for two reasons. First, we did not have to worry about name
caching at all. Second, it allowed us to build a very simple data cache consistency algo-
rithm. However, it had the potential to increase server load, as was discovered by the
Andrew file system when its authors also required that the server be contacted on each
file open [How88]. The next chapter will include a discussion of the impact of this
decision on Sprite file system performance.

The rest of this chapter covers the design of the caching mechanism in the Sprite
file system, and is organized as follows: Section 3.2 covers the basic structure of the
cache; Section 3.3 presents the Sprite cache consistency mechanism; Section 3.4
describes how files are represented on disk; Section 3.5 covers details of the implemen-
tation of the file system, including discussions of reliability and crash recovery.

3.2. Basic Cache Structure

The Sprite caches are organized on a block basis using a fixed block size of 4
Kbytes. The cache block size corresponds to the disk block size, which 1s also 4
Kbytes. We chose the disk block size based on the results obtained by McKusick er al.
[MJL84], who determined that large block sizes on the order of 4 Kbytes result in sub-
stantially better file system performance than smaller block sizes. In addition, studies
by Kent [Ken86] and Ousterhout [Ous85] also demonstrate the virtues of a large block
size. Whether the disk block size should be even larger is an open question which we
will address as we gain more experience with the system.

The choice to use a fixed block size was dictated by our striving for simplicity.
The other option was to use block sizes in the range from 1 Kbyte up to 4 Kbytes
depending on the amount of data in the block. The potential advantage of this scheme
is that it may waste less space than the fixed block size scheme. However, it is more
complex and, as memories get larger, the advantage of conserving file system cache
space should diminish.
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3.2.1. Block Addressing

Cache blocks are addressed virtually, using a unique file identifier provided by the
server and a block number within the file. We used virtual addresses instead of physi-
cal disk addresses so that clients could create new blocks in their caches without first
contacting a server to allocate physical disk blocks. Virtual addressing also allows
blocks in the cache to be located without traversing the file’s disk map. By using vir-
tual addresses we were able to use the same implementation for the client cache as for
the server cache.

For files accessed remotely, client caches hold only data blocks. Servers also
cache file maps and other disk management information. These blocks are addressed in
the server’s cache using the blocks’ physical disk addresses along with a special “‘file
identifier’’ corresponding to the physical device.

Although a file’s disk map does not have to be consulted when locating a block in
the server’s cache, the map does have to be used when the block is read into the
server’s cache and when it is written to disk. Since looking in a file map is a fairly
expensive operation, the server keeps with each cache block the physical location of the
block on disk. In this way. the location of the block on disk only has to be looked up
when it is put into the cache, not when the block is written out to disk.

3.2.2. Writing Policy

As mentioned earlier, Sprite uses a 30-second delayed-write policy. Under this
policy, blocks are initially written only to the cache, and then written back 30 seconds
later. This policy is used both on servers and clients, and is implemented by having a
process scan through the cache every 5 seconds and schedule write-backs for all dirty
blocks that have not been modified in the last 30 seconds. A block written on a client
will be written to the server’s cache in 30-35 seconds, and will be written to disk in 30-
35 more seconds. Thus a block can be dirty for up to 70 seconds before it ends up get-
ting written back to disk.

3.2.3. Block Management

Sprite uses a least-recently-used (LRU) block replacement strategy. Each block in
the cache that contains valid data is kept on a linked list called the LRU list; whenever a
block is accessed, it is moved to the tail of the list. All blocks that do not contain valid
data are kept on a separate list called the free lisz. A new block is allocated in the fol-
lowing manner. If the free list contains a block, then the first block on the free list is
used. Otherwise blocks are removed from the head of the LRU list until a clean block
is found; any dirty blocks that were removed from the head of the LRU list are
scheduled to be written back to the server’s cache or disk. Once a new block is allo-
cated it is moved to the tail of the LRU list.

Dirty blocks that need to be written back are kept on a dirty list that is associated
with each file, and all files with non-empty dirty lists are kept on a list of dirty files.
The dirty blocks are written back by a group of block cleaner processes. A dirty block
is scheduled to be written back either because it comes to the head of the LRU list or
because it is dirty and it has not been modified in 30 seconds. When a block is
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Figure 3-1. List data structures. The file system maintains three global lists and one
per-file list. Al blocks that are not currently being used to cache file data are on the
free list. All blocks that are being used to cache data are on the LRU list. Dirty blocks
that are scheduled to be written back are on the dirty list for the file that they reside in
and all the file dirty lists are linked together. In this example there are 3 unused blocks
that are on the free list. The LRU list contains 2 blocks from file A (denoted A-1, A-
2), 3 blocks from file B (denoted B-1, B-2 and B-3) and one block from file C (denoted
C-1). Blocks A-1 and A-2 are dirty and they are both on file A’s dirty list because they
have been scheduled to be written back. Block B-3 is dirty and it is on file B’s dirty
list because it also has been scheduled to be written back. Block C-1 is also dirty but it
is not on file C’s dirty list because it has not been scheduled to be written back yet.

scheduled for write back, it is put onto the dirty list for the file in which it resides, the
file is put onto the list of dirty files, and one of the block cleaner processes is awakened
and given the responsibility of writing back all the blocks on the file’s dirty list. In
order to reduce synchronization problems, there is only one process writing back a file’s
dirty blocks at any given time. Normally, after a block is written back, it is left in its
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current position in the LRU list. However, if the block was placed onto the dirty list
because it came to the head of the LRU list and needs to be recycled, then it is put onto
the free list instead (see Figure 3-1 for a summary of the list data structures).

3.2.4. Synchronization

The Sprite kernel is written so that multiple processes can be executing in the ker-
nel at the same time. Since multiple processes could be accessing the same file at the
same time, the file system uses locking to ensure that only one operation is occurring on
a file at once. These operations include reading, writing, opening, closing, and getting
the attributes of a file. If multiple user processes wish to access the same file at the
same time, the accesses will be serialized once the processes begin executing inside the
file system code. This explicit locking is required in order to protect kernel data struc-
tures that are associated with each file.

3.3. Cache Consistency

The Sprite file system provides cache consistency for both concurrent and sequen-
tial write-sharing. However, because of the expected infrequency of concurrent write-
sharing, the algorithm is optimized for the case when there is no concurrent write-
sharing. Sprite uses the file servers as centralized control points for cache consistency.
Each server guarantees cache consistency for all the files on its disks, and clients deal
only with the server for a file: there are no direct client-client interactions. The Sprite
algorithm depends on the fact that the server is notified whenever one of its files is
opened or closed, so it can detect when concurrent write-sharing is about to occur.

3.3.1. Concurrent Write-Sharing

Concurrent write-sharing occurs for a file when it is open by multiple clients and
at least one of them has it open for writing. Sprite deals with this situation by disabling
client caching for the file, so that all reads and writes for the file go through to the
server. When a server detects (during an ‘‘open’’ operation) that concurrent write-
sharing is about to occur for a file, it takes two actions. First, it notifies the client that
has the file open for writing, if any, telling it to write all dirty blocks back to the server.
There can be at most one such client. Second, the server notifies all clients that have
the file open, telling them that the file is no longer cacheable. This causes the clients to
remove all of the file’s blocks from their caches. Once these two action$ are taken,
clients will send all future accesses for that file (both reads and writes) to the server.
The server’s kernel serializes the accesses to its cache, producing a result identical to
running all the client processes on a single timeshared machine.

Caching is disabled on a file-by-file basis, and only when concurrent write-sharing
occurs. A file can be cached simultaneously by many clients as long as none of them is
writing the file, and a writing client can cache the file as long as there are no concurrent
readers or writers on other workstations. When a file becomes non-cacheable, only
those clients with the file open are notified; if other clients have some of the file’s data
in their caches, they will take consistency actions the next time they open the file, as
described below. A non-cacheable file becomes cacheable again once it is no longer
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undergoing concurrent write sharing; for simplicity, however, Sprite does not not re-
enable caching for files that are already open.

3.3.2. Sequential Write-Sharing

Sequential write-sharing occurs when a file is modified by one client, closed, then
opened by some other client. There are two potential problems associated with sequen-
tial write-sharing. First, when the second client opens the file, it may have out-of-date
blocks in its cache. To solve this problem, servers keep a version number for each file,
which is incremented each time the file is opened for writing. Each client keeps the
version numbers of all the files in its cache. When a file is opened, the client compares
the server’s version number for the file with its own. If they differ, the client flushes the
file from its cache. This approach is similar to those of NFS and of the early versions of
Andrew.

The second potential problem with sequential write-sharing is that the current data
for the file may be in some other client’s cache (the last writer need not have flushed
dirty blocks back to the server when it closed the file). Servers handle this situation by
keeping track of the last writer for each file; this client is the only one that could poten-
tially have dirty blocks in its cache. When a client opens a file, the server notifies the
last writer (if there is one and if it is a different client than the opening client), and waits
for it to write its dirty blocks through to the server. This ensures that the reading client
will receive up-to-date information when it requests blocks from the server.

3.3.3. Simulation Results

3.3.3.1. Cache Consistency Overhead

While we were designing the Sprite caching mechanism, I used the trace data from
the Ousterhout er al. study to estimate the overheads associated with cache consistency.
I also estimated the overall effectiveness of client caches. The traces were collected
over 3-day mid-week intervals on 3 VAX-11/780s running 4.2 BSD UNIX for program
development, text processing, and computer-aided design applications; see [Ous85] for
more details. The data were used as input to a simulator that treated each timesharing
user as a separate client workstation in a network with a single file server. The results
are shown in Table 3-2. Client caching reduced server traffic by over 70%, and resulted
in read hit ratios of more than 80%.

Table 3-3 presents similar data for a simulation where no attempt was made to
guarantee cache consistency. A comparison of the bottom-right entries in Tables 3-2
and 3-3 shows that about one-fourth of all server traffic in Table 3-2 is due to cache
consistency. Table 3-3 is not realistic, in the sense that it simulates a situation where
incorrect results would have been produced; nontheless, it provides an upper bound on
the improvements that might be possible with a more clever cache consistency mechan-
ism.

I performed these simulations before we implemented our Sprite file system
design, so that I could determine if our design was sound. The results from these
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Server Traffic With Cache Consistency
Client Cache Size | Blocks Read | Blocks Written Total Traffic Ratio
0 Mbyte 445815 172546 618361 100%
0.5 Mbvte 102469 96566 199335 2%
1 Mbyte 84017 96796 180813 29%
2 Mbytes 77445 96796 174241 28%
4 Mbytes 75322 | 96796 172118 28%
8 Mbvtes 75088 | 96796 171884 28%

Table 3-2. Client caching simulation results, based on trace data from BSD study.
Each uscr was trcated as a different client, with client caching and a 30-second
delayed-write policy. The table shows the number of read and write requests made by
client caches to the server, for different client cache sizes. The *‘Traffic Ratio™’
column gives the total server traffic as a percentage of the total file traffic presented to
the client caches. Write-sharing is infrequent: of the write traffic, 4041 blocks were
written through because of concurrent write-sharing and 6887 blocks were flushed
back because of sequential write-sharing.

Server Traffic, Ignoring Cache Consistency
| Client Cache Size | Blocks Read | Blocks Written Total Traffic Ratio
0 Mbyte 445815 172546 618361 100%
0.5 Mbyte 80754 93663 174417 28%
1 Mbyvte 52377 93258 145635 24%
2 Mbyvtes 41767 03258 135025 22%
4 Mbvtes 38165 03258 131423 21%
& Mbytes 37007 93258 130265 21%

Table 3-3. Traffic without cache consistency. Similar to Table 3-1 except that cache
consistency issues were ignored completely.

simulations show that a) client caching can greatly reduce server traffic and b) our
cache consistency algorithm does not introduce a significant overhead. These results
strengthened our hypotheses about the effectiveness of client caching and our simple
cache consistency algorithm, and indicated to us that we should proceed with the imple-
mentation.

3.3.3.2. Simulation of Several Mechanisms

Jim Thompson [Tho87] did a much more detailed simulation of cache consistency
policies than we did. He simulated not only the Sprite policy, but several other policies
as well. His simulation was done after we had already implemented the Sprite mechan-
ism, used the same detailed traces that were described in Chapter 2, and used his
transfer ratio, a complex measure of server and network loading, as the metric by which
to judge performance. The Sprite mechanism was by far the simplest of all the
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mechanisms that he simulated, but also had the worst performance of all of the
methods, with a transfer ratio of 45%. He estimates that the transfer ratio can be
lowered to 35% if opens and closes do not have to go through to the server and to 23%
if very sophisticated and potentially less practical algorithms are used. The result is
that a sophisticated algorithm can reduce the transfer ratio by up to a factor of 2.

Thompson’s simulations indicate that the Sprite algorithm may provide a much
higher load on the network and the server relative to more sophisticated algorithms.
The results in the next chapter will support Thompson’s results by showing that, if
clients are allowed to cache naming information so that they can open and close files
without contacting a server, the server utilization and network utilization can be cut by
nearly a factor of 2. However, the next chapter will also show that, even with the sim-
ple Sprite cache consistency algorithm, client caching provides excellent diskless client
performance while reducing the server load and network load to very reasonable levels.
Thus, although more complex cache consistency algorithms may reduce server and net-
work loading, in practice it does not matter; the use of client caching is much more
important to performance than which cache consistency algorithm is used.

3.4. Sprite File Structure on Disk

The Sprite file system’s data structures used to describe where files are located on
disk are similar to the UNIX data structures. Each disk contains three types of data: file
descriptors, file data blocks and indirect blocks. Among other file attributes, each file
descriptor contains information about where on disk a file’s data blocks are located.
Each descriptor contains 10 direct block pointers, one singly-indirect block pointer and
one doubly-indirect block pointer (see Figure 3-2).

The file descriptors contain low-level descriptions of files. Built on top of the file
descriptors is the directory structure, which gives a mapping from a file name to a file
descriptor. As in UNIX, in Sprite directories are stored like normal files. Each direc-
tory contains a list of (file name, file descriptor id) pairs; the file descriptor identifier is
used to locate the file descriptor for the file.

Although Sprite’s file descriptor and directory structures are similar to those in
UNIX, the organization of the disk is different; we decided to concentrate our efforts on
building an efficient caching mechanism rather than on optimizing disk performance.
All of the file descriptors are grouped together at the beginning of the disk; since each
file descriptor is only 128 bytes, each file system block contains 32 file descriptors. The
rest of the disk consists of data blocks and indirect blocks.

When a new block is allocated to a file, a data block and possibly an indirect block
will have to be allocated. If a data block has no preceding block in the file, then a ran-
dom data block is chosen out of all available data blocks. Otherwise, a block that is
nearest on the disk to the preceding block is chosen. This is done to reduce the number
of seeks between reads and writes of successive data blocks. When an indirect block is
allocated, a random block is chosen.

When a new file is created, a file descriptor must be allocated for the new file. If
the file that is being created is a normal file, then Sprite attempts to allocate a file
descriptor that is in the same or nearby file descriptor block as the file’s directory. This
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Figure 3-2. File disk structure. Among other attributes such as the reference time and
the owner, a file descriptor contains the location of the data blocks on disk. Each
descriptor contains 10 direct block pointers, 1 singly-indirect block pointer and 1
doubly-indirect block pointer. In this picture the direct block pointers are denoted D-0
through D-9 and they contain the disk addresses of blocks O through 9 in the file. The
singly-indirect block pointer is denoted SI and it points to a block of 1024 direct block
pointers; these pointers point to blocks 10 through 1033 in the file. The doubly-
indirect block pointer is denoted DI and it points to a block with 1024 singly-indirect
block pointers. The first singly-indirect block contains pointers to blocks 1034 through
2057 in the file, the second singly-indirect block points to blocks 2058 through 3081
and so on.

allows the file descriptors for many files within a given directory to be read or written
with only one disk operation. When a new directory is created it is put into a random
descriptor block. This is done so that the directories will be randomly distributed
amongst the file descriptors; otherwise all directories would end up fighting for file
descriptors in the same file descriptor blocks.
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There are two potential problems with the simple Sprite disk layout. First, when a
block is allocated to a file, Sprite chooses the nearest block on disk even if the block is
not rotationally optimal; the result is that, in general, Sprite is only able to transfer one
block per disk revolution. Second, Sprite does not attempt to put either the file descrip-
tor or the indirect blocks for a file near to the data blocks for the file. This is different
from the UNIX 4.2 BSD implementation, which puts file descriptors, indirect blocks
and data blocks for a file within the same group of cylinders on disk [MJL84]. The
result is that Sprite may have to perform longer seeks between reads and writes of the
three types of disk data. Because all three types of data are cached by Sprite, reading
the data from disk should not be a problem. However, the disk layout does impact writ-
ing performance and will be discussed further in Chapter 5.

3.5. Details of the Implementation

3.5.1. Implementing Delayed-Write

The delayed-write policy used by Sprite provides good writing performance but it
complicates the implementation of the file system in two ways. First, since the server is
not contacted on every write of data, disk space cannot be allocated for newly written
data blocks. This means that, when the client eventually writes the new block back to
the server (as much as 35 seconds later) there may be no disk space available; what is
even worse is that the user process that wrote the data to the cache may have exited
with the belief that the data that it generated is safe. This is handled in Sprite in a sim-
ple manner: when it is detected on a delayed write that there is no disk space available,
the user is informed of the situation (including the names of files that cannot be written
back), and the delayed write will be tried again 30 seconds later. Itis up to the user to
free up enough space on disk to store the data that cannot be written back.

Another complication from the delayed-write scheme is that, for up to 35 seconds
after new data is written, the client, not the server, will know the current modify time
for the file and the current file size. Likewise, since reads do not go through to the
server, the client will also know the current access time for the file. This presents a
problem if a client other than the one with the most up-to-date attributes tries to get the
attributes of a file. Since in Sprite all attempts to get the attributes of a file must go
through to the server of the file, the server can keep the attributes consistent. If the
server detects that it does not have the most recent attributes for a file, it will retrieve
the attributes from the client that does have the most recent attributes. This call-back
mechanism is implemented in a similar way to that used for cache consistency
explained above.

3.5.2. Providing Reliability

The design of the Sprite file system has emphasized performance, not reliability.
We chose to use a 30-second delayed-write policy similar to the one that has been used
successfully in many versions of UNIX for the past 15 years. The use of the 30-second
delayed-write policy introduces the possibility of data getting lost on a system crash: up
to 35 seconds of data on a client crash, and up to 70 seconds on a server crash. In order
to reduce the likelihood of data getting lost during a crash, the Sprite caching code has
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been carefully written, so that, when a machine crashes, there is a high probability that
it can write its cache back to the server or to disk. This is done by ensuring that the
cache write-back code only relies on either the RPC system or the disk sub-system to be
functional; both of these are very stable and have no known bugs.

Even though the cache can usually be written back on system crashes, there is still
the possibility of lost data. In fact, because of the behavior of certain important pro-
grams that manage files (e.g., source code control systems and editors), much more seri-
ous damage can occur on a system crash. For example in the mx editor developed by
John Ousterhout, whenever the file that is being edited is saved by the user, the editor
truncates the file and rewrites it. The truncate command goes through to the file server
so that disk space can be reclaimed, but the rewritten data does not for at least 30
seconds. As a result, on a system crash the entire contents of the file, including data
that could have been written in days past, can be lost.

In order to provide higher reliability to those programs that require it (e.g., edi-
tors), the file system provides a function, callable by user programs, that forces a file to
be synchronously flushed from the client’s cache to the server’s disk. This function
only provides a partial solution to the reliability problem, because a crash could occur
between a file truncation operation and a forced write-back operation; the truncation
will delete the file data and the new data may be lost during the crash. A common solu-
tion used by many programs is to use temporary files and file move operations. A pro-
gram that used this method would first write data to a temporary file, force the data to
be written through to the server’s disk, and then rename the temporary file so that it has
the same name as the original file. In order for this to work safely, the file system pro-

vides an atomic file rename operation with the semantics that either the original copy of

the file exists or it has been replaced by the new copy of the file.

The solutions that have been used in other file systems to provide a higher measure
of reliability than Sprite’s are based on file versions [CaW86, SGN85] or atomic tran-
sactions [BKT85, PoW85]. The systems that use file versions create a new version each
time that a file is written. Thus, files will never be destroyed as a result of client or
server crashes, because old versions of files will remain safely on disk. We chose not to
use the version mechanism so that we could stay compatible with the standard UNIX
paradigm for accessing files.

Transaction systems guarantee that, when a file is rewritten, either the new version
of the file will exist or the old version will exist, but the file’s original contents will not
be lost. We did not implement transactions for two reasons. First, we did not feel that
the application environment that we were targeting for required transactions. Second,
transactions are inherently complex and potentially have a negative impact on perfor-
mance.

Although Sprite does not provide the same measure of reliability as some other
systems, we are satisfied with its reliability. Data does still occasionally get lost during
system crashes, but the system is becoming much more stable and, as a result, file data
is rarely lost. We could have made the system mors reliable by using transactions or
file versions, but it would have resulted in a more complex and possibly less efficient
implementation. The delayed-write policy used in Sprite is a compromise between
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reliability and performance: it gives the best performance while giving reliability that is
quite acceptable in our environment.

3.5.3. Cache Consistency Implementation

Although the Sprite cache consistency mechanism is simple in principle, there are
several complexities in its implementation. One such complexity is synchronizing
access to the per-file cache state information. In order to allow the server to determine
the consistency state for a file, the server maintains two pieces of state information for
each file: a list of clients that are using the file and the client that was the last writer.
The server does not need to maintain state information about clients that have closed a
file and only have clean data in their cache; version number verification at file open
time will keep these files consistent. Access to the consistency data structures must be
serialized. For example, when a file is being opened, no other open of the file can occur
until the file is brought to a consistent state, because another open could potentially
change the cacheable state of the file.

In order to allow files to be safely brought to a consistent state the file system has
two types of locks for each file. One lock is called the I/O lock and is used to ensure
that only one read or write can occur to a file at one time; this lock is necessary to pro-
tect certain kernel data structures associated with each file. The other lock is called the
consistency lock and is used to synchronize access to the cache consistency data struc-
tures. Two separate locks are required because the act of bringing a file to a consistent
state may require that the server call back to clients to force them to write back their
dirty data. Thus, while access to the cache consistency data structures for a file is being
serialized, a write to the file must be able to occur.

Another complexity in the Sprite cache consistency mechanism is performing the
client call-backs when the cacheable state of a file changes. Inherent in any network
implementation is the possibility that messages may arrive out of order. One possible
way that this can happen is when messages get lost and have to be resent. This message
ordering problem adds the potential of a race condition to the Sprite cache consistency
algorithm (see Figure 3-3). When the open of a file by a client completes, the server
sends back a reply to the client that indicates whether the file is cacheable or not. Once
the reply is sent, an open by another client can occur on the file. If the second open
makes the file change from cacheable to non-cacheable then the server will send a mes-
sage to the first client telling it not to cache the file after all. However, if the reply to
the first open gets lost, then the server’s message telling the client not to cache the file
could be received before the reply from the open. Therefore if a client derives the
cacheable state for a file from the most recent server message about the file, a client
could erroneously believe that it can cache a file.

This race condition is solved by introducing open time stamps (see Figure 3-4).
Each time that a client opens a file, the server stores the time when the open occurred
with the client state information it keeps with each file. This time stamp is also sent
back to the client with the open reply, and clients keep the most recent time stamp with
each file. When a server sends a cache consistency message for a file to a client, it
includes the time of the most recent open of the file by that client. There are three
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Figure 3-3. Open race condition. Client 1 opens file f1 for reading. The server sends
a reply to the open which indicates that the client can cache the file. However, the re-
ply gets lost. Before the server detects that the reply got lost, client 2 opens file f1 for
writing. Since client 1 has the file open for reading, the server detects that concurrent
write sharing is about to occur, tells client 1 that it can no longer cache the file, and re-
plies to client 2. The server then resends the reply to the original open request made
by client 1. If client 1 only pays attention to the last message from the server, then it
will mistakenly think that it can cache file f1.

possibilities when a client receives a consistency message. The most likely possibility
is that the client and server time stamps are equal. In this case the client will process
the message and inform the server when it has finished taking the necessary cache con-
sistency actions. The second possibility is that the client’s time stamp is greater than
the server’s time stamp. When this happens the client will drop the message because it
realizes that the message pertains to an old open of the file.

The final possibility is that the client’s time stamp for the file is less than the
server’s time stamp; this is the race condition that the time stamps were designed to
solve. When this occurs, the client realizes that the server is referring to an open for
which the client has yet to receive the reply. The client will force the server to resend
the message in the hope that the open reply will come in before the server is able to
resend the cache consistency message (see Figure 3-4). The reason why the client
forces the server to resend rather than queue up the message was done for to reduce the
amount of state information to be maintained by the client.

One final detail of the implementation is the management of the last writer infor-
mation. Since Sprite uses a 30-second delayed-write policy, all of a file’s blocks will be
up-to-date in the server’s cache within 35 seconds after the file is closed on the client.
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Figure 3-4. Solution to open race condition. The problem is solved with time stamps.
Client 1 first opens file f1 for reading and gets back a time-stamp equal to 1. Client 1
then opens f1 again for reading, but this time the server’s reply gets lost. Before the
server detects that the reply got lost, Client 2 opens file f1 for writing. The server
detects that concurrent write sharing is about to occur and sends a cache consistency
message to Client 1. However, by comparing time stamps Client 1 determines that the
server is referring to an open that the client has not got the reply for yet. As a result
the client tells the server that the time stamp that it gave was too large and it should try
again. Meanwhile the server resends the reply to the latest open for Client 1. The
server then resends the cache consistency message. This time the client has the same
time stamp as the server. Once the server gets the successful reply from Client 1 it re-
plies to the open from Client 2.
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There is no reason to maintain the last writer information when there are no more dirty
blocks in the last writer’s cache. This state information is cleaned up by having the
client inform the server when it no longer has dirty blocks for a file; this can happen
either when the file is closed or when the last dirty block is written back. This is not
only an optimization, but is also a necessity in order to allow client workstations to
clean up state information for files that are no longer cached. If a client deletes the state
information about a closed file, it will not be able to handle cache consistency messages
for the file; it will not know if a cache consistency message is for an open that has not
yet completed or for an open that happened before the file state information was
cleaned up. Thus, the client must ensure that the server knows that the client no longer
has dirty blocks for a file before it deletes important state information.

Unfortunately, there is a race condition when trying to detect that a client no
longer has dirty blocks for a file. When a file is closed, the client must determine if it
has dirty blocks for the file. If not, it includes with the close message an indication that
it does not have any dirty blocks for the file. In addition, when a client writes back a
dirty block (as part of a 30-second dealyed write) it must indicate to the server whether
or not this is the last dirty block for the file. The race occurs between the delayed
write-back and the close. Assume that when a file is closed there remains one dirty
block. The client will inform the server in this case that it still has dirty blocks for the
file. Now assume that, immediately after the close, the last block for the file is written
back. On this operation, the client will inform the server that there are no more dirty
blocks for the file. The problem occurs if the write-back message arrives before the
close message. The server cannot believe the write-back message because it thinks that
the file is still open on the client and that the client can still generate dirty blocks. How-
ever, if the server ignores the write-back message, then it will lose the fact that there are
really no more dirty blocks for the client. This problem is solved by synchronizing
delayed write-backs and closes: while a file is being written-back, the file cannot be
closed and vice versa. This guarantees that the messages will arrive in the right order.

3.5.4. Crash Recovery

One of the disadvantages of the Sprite caching mechanism is that servers must
maintain a large amount of state information in their main memories. This includes
both file data as well as information about which clients have open files. In order for
clients to be allowed to continue after a server crashes and reboots, this state must be
recoverable. In contrast, the servers in Sun’s NFS are stateless. This results in less
efficient operation (since all important information must continually be written through
to disk), but it means that clients can recover from server crashes: the processes are put
to sleep until the server reboots, then they continue with no ill effects.

Sprite’s approach is to recover from the most common cases and be able to detect
when uncommon, non-recoverable cases occur. The server’s state information about
open files is recovered with help from the clients. The Sprite RPC system allows
clients to determine when a server crashes and when a server reboots. When a client
detects a server crash, it delays write-backs of dirty blocks to the server until it detects a
reboot. When the server reboots, the client attempts to reopen all of its files and then
writes back any dirty blocks that need to be written back to the server.
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In all but two cases, a client will be able to reopen its files and continue normally.
The first case is a race condition between clients reopening files and clients opening
files; in some cases a cache consistency violation may occur. For example, assume that
client Cl is caching file F1 for writing when the server crashes. Now if, when the
server reboots, client Cl is unable to reopen F1 before some other client opens F1, then
a cache consistency violation will occur. If such a violation occurs, the reopen fails.
The probability of these violations occurring is diminished by having servers give
clients time to reopen their files before accepting new opens for files.

The second case where a client will not be able to reopen files is when the server
lost dirty blocks that the client had written back. The current mechanism that 1s used to
handle this case is to detect when the server is unable to write-back its data to disk on a
crash. When the system reboots, if it was able to successfully write back its cache to
disk when it crashed (the server marks its disk when it is able to successfully flush the
cache), then clients are allowed to reopen files normally. Otherwise, all reopens for
files on the disk are refused. As mentioned earlier, the file caching code is carefully
written, so that, unless there is an error in the cache data structures or the disk sub-
system, the server will be able to write its cache back to disk; based on current experi-
ence with the system, the server very rarely fails while trying to write its cache to disk
after a crash.

The other option that can be used to allow the server to recover file data informa-
tion after it reboots is to use a more secure writing policy. For example, if file servers
used a write-through policy, then there would be no chance of data getting lost on a
server crash. Chapter 5 looks into the performance impact of such a writing policy.

3.6. Summary

In this chapter I have presented the design of the Sprite file system. The file sys-
tem has been designed for high performance and to maintain the ease of file sharing that
was available in timesharing systems. In order to achieve this performance, Sprite pro-
vides caching on both client and server machines. A 30-second delayed-write policy is
used on both client and server machines in order to get the best writing performance.
The file system guarantees workstations a consistent view of the file data, even when
multiple workstations access the same file simultaneously and the file is cached in
several places at once. This is done through a simple cache consistency mechanism
that flushes portions of caches and disables caching for files undergoing read-write shar-
ing. The result is that file access under Sprite has exactly the same semantics as if all of
the processes on all of the workstations were executing on a single timesharing system.

One of the disadvantages of the Sprite approach is that it is not as reliable as many
other systems because we set performance as our primary goal. This introduced a few
potential reliability problems, which we are solving as we encounter them. I am
confident in our ability to provide an acceptable level of reliability. Efficient methods
of providing better reliability by allowing programs to force data onto the server’s disk
will be discussed in Chapter 5.

Although the file system must maintain state information in order to provide cache
consistency, it is designed to gracefully recover from most client and server crashes.
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The recovery mechanism is designed so that full recovery is possible in the normal
case, but certain rare cases may not be recoverable. The mechanism is simple, yet
should work in most cases. ’
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CHAPTER 4

File System Performance

4.1. Introduction

This chapter presents performance measurements of the benefits of client data
caching. The measurements were made by running a series of file-intensive benchmark
programs against the Sprite file system. The goal was to measure the benefits provided
by client caches in reducing delays and contention:

e How much more quickly can file-intensive programs execute with client caches than
without?

e How much do client caches reduce the load placed on server CPUs?
e How much do client caches reduce the network load?
e How many clients can one server or network support?

e How will the benefits of client caches change as CPU speeds and memory sizes
increase?

All of the measurements were made on configurations of Sun-3 workstations (about 2
MIPS processing power). Clients were Sun-3/75°s and Sun-3/160’s with at least 8
Mbytes of memory, and the server was a Sun-3/180 with 16 Mbytes of memory and a
400-Mbyte Fujitsu Eagle disk.

4.2. Micro-benchmarks

I wrote several simple benchmarks to measure the low-level performance of the
Sprite file system. The first set of benchmarks measured the time required for local and
remote invocation of four common file lookup operations (see Table 4-1). The remote
versions took 3-6 times as long as the local versions; about half of the elapsed time for
the remote operations was spent executing in the server’s CPU. The second set of
benchmarks measured the raw read and write performance of the Sprite file system by
reading or writing a single large file sequentially. Before running the programs, I
rigged the system so that all the accesses would be satisfied in a particular place (e.g.
the client’s cache). Table 4-2 shows the I/O speeds achieved to and from caches and
disks in different locations.

Table 4-2 contains two important results. First, a client can access bytes in its own
cache 7-8 times faster than those in the server’s cache. This means that, in the best
case, client caching could permit an application program to run as much as 7-8 times
faster than it could without client caching. The second important result is that a client
can read and write the server’s cache at about the same speed as a local disk. In the
current implementation the server cache is twice as fast as a local disk, burt this is
because Sprite’s disk layout policy only allows one block to be read or written per disk
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File Lookup Operations
. . Diskless
Operation Local Disk Elapsed Time | Server CPU Time
Open/Close 3.30ms 10.06ms 5.34ms
Failed Open 1.30ms 4.15ms 2.08ms
Get Attributes 1.10ms 4.32ms 2.21ms
Get Auributes 1D 0.54ms 3.63ms 1.71ms

Table 4-1. Cost of four common file lookup operations in Sprite. Each of these opera-
tions requires contacting the server of the given file. Times are milliseconds per opera-
tion on a pathname with a single component. The first row is the cost of opening and
closing a file, the sccond row is the cost of opening a file that does not exist, the third
row is the cost of getting the attributes of a file (*‘stat’’), and the fourth row is the cost
of getting the attributes of a file that is already open.

revolution. We expect eventually to achieve throughput to local disk at least as good as
4.3BSD’s, or about 2-3 times the rates listed in Table 4-2; under these conditions, the
local disk will have about the same throughput as the server’s cache. In the future, as
CPUs get much faster but disks do not, the server’s cache should become much faster
than a local disk, up to the limits of network bandwidth. For example, if the clients and
servers were 8-MIPS Sun-4s instead of 2-MIPS Sun-3s, then a client should be able to
read the server’s cache up to 4 times as fast as a local disk. Even for paging traffic, this
suggests that a large server cache may provide better performance than a local disk.

4.3. Macro-benchmarks

The micro-benchmarks discussed in the previous section give an upper limit on the
costs of remote file access and the possible benefits of client caching. To see how much
these costs and benefits affect real applications, I ported several well-known programs
from UNIX to Sprite and measured them under varying conditions. Iran each bench-
mark three times for each data point measured and took the average of the three runs.
Table 4-3 describes the benchmark programs. See Appendix A for detailed tables with
the results of running the 5 benchmarks including standard deviations.

Read & Write Throughput, Kbytes/second
Local Cache | Server Cache | Local Disk | Server Disk |
Read 3357 470 222 207
Write 2786 368 200 178

Table 4-2. Maximum rates at which programs can read and write file data in various
places, using large files accessed sequentially.
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I/O (Kbytes/sec)
Read Write
Andrew Copy a directory hierarchy containing 70 58.0 36.5
files and 200 Kbytes of data; examine the
status of every file in the new subtree; read
every byte of the files; compile and link
the files. Developed by M. Satyanarayanan
for benchmarking the Andrew file system;
see [How88] for details.

Vm-make | Use the ‘‘make’’ program to recompile 42.3 25.9
the Sprite virtual memory system: 14 source files,
12600 lines of C source code.

Program Description

Sort Sort a 1-Mbyte file. 46.4 89.9
Diff Compare 2 identical 1-Mbyte files. 452.2 4.3
Ditroff Format a paper which contains both figures and 7.0 10.4
tables. The input file contains 56 Kbytes of
data.

Table 4-3. Macro-benchmarks. The I/O columns give the average rates at which file
data were read and written by the benchmark when run on Sun-3's with local disks and
warm caches; they measure the benchmark’s I/O intensity.

4.3.1. Application Speedups

Table 4-4 lists the total elapsed time to execute each of the macro-benchmarks
with local or remote disks and with client caches enabled or disabled. Without client
caching, diskless machines were about 10-20% slower than those with disks; one
benchmark, Diff, was actually 85% slower on diskless machines than on machines with
disks. With client caching enabled and a warm start (caches already loaded by a previ-
ous run of the program), the difference between diskless machines and those with disks
was very small; in the worst case, it was only about 8%. Figure 4-1(a) shows how the
performance varied with the size of the client cache.

4.3.1.1. Server Load

One of the most beneficial effects of client caching is its reduction in the load
placed on server CPUs. Figure 4-2 shows the server CPU utilization with and without
client caching. In general, a diskless client without a client cache utilized about 5-27%
of the server’s CPU. With client caching, the server utilization dropped by a factor of
1.5 or more, to 1.5-12%.

4.3.1.2. Network Utilization

In their analysis of diskless file access, based on Sun-2 workstations, Lazowska er
al. concluded that network loading was not yet a major factor in network file systems
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Local Disk, Diskless, Diskless,
Benchmark with Cache Server Cache Only || Client & Server Caches

Cold Warm Cold Warm Cold Warm

Andrew 265 255 321 307 288 275
104% 100% 126% 120% 113% 108%

Vm-make 284 277 337 330 305 296
103% 100% 122% 119% 110% 107%

Sort 64 60 75 71 65 59
107% 100% 125% 118% 108% 98%

Diff 21 4.6 25 8.5 25 4.5
457% 100% || 543% 185% 543% 98%

Ditroff 128 125 133 13:1 128 125
102% 100% 106% 105% 102% 100%

Table 4-4. Execution times with and without local disks and caching, measured on
Sun-3's. The top number for each run is total elapsed time in seconds. The bottom
number is normalized relative to the warm-start time with a local disk. *‘Cold’’ means
that all caches, both on server and client, were empty at the beginning of the run.
“‘Warm’' means that the program was run once to load the caches, then timed on a
second run. In the ‘‘Diskless, Server Cache Only’’ case, the client cache was disabled
but the server cache was still enabled. In all other cases, caches were enabled on all
machines. All caches were allowed to vary in size using the VM-FS negotiation
scheme described in Chapter 6.
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Figure 4-1. Client degradation and network traffic (diskless Sun-3's with client
caches, warm start) as a function of maximum client cache size. For each point, the
maximum size of the client cache was limited to a particular value. The ‘‘degradation”
shown in (a) is relative to the time required to execute the benchmark with a local disk
and a 4-Mbyte warm cache. The diff benchmark did not fit on graph (a); for all cache
sizes less than 2 Mbytes it has a degradation of 85% and for all larger cache sizes it has
no degradation. The network traffic shown in (b) includes bytes transmitted in packet
headers and control packets, as well as file data. The diff benchmark did not fit on
graph (b) either; for all cache sizes less than 2 Mbytes it has an 1/O rate of 260
Kbytes/second and for all larger cache sizes it has an I/O rate of only 1.3
Kbytes/second.
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Figure 4-2. Client caching reduces server loading by at least a factor of 1.5-3 (meas-
ured on Sun-3’s with variable-size client caches).

[LZC86]. However, as CPU speeds increase, the network bandwidth is becoming more
and more of an issue. Figure 4-1(b) plots network traffic as a function of cache size for
the benchmarks running on Sun-3’s. Without client caching the benchmarks averaged
7.8% utilization of the 10-Mbit/second Ethernet. The most intensive application, diff,
used 20% of the network bandwidth for a single client; the other 4 benchmarks aver-
aged 4.65% of the 10-Mbit/second Ethernet. Machines at least five times faster than
Sun-3’s are already available (e.g., Sun-4 workstations); a single one of these machines
would utilize 25-100% of the Ethernet bandwidth running the benchmarks without
client caching. Without client caches, application performance may become limited by
network transmission delays, and the number of workstations on a single Ethernet may
be limited by the bandwidth available on the network.

Fortunately, Figure 4-1(b) shows that client caching reduces network utilization by
a factor of 4-10, to an average of about 0.66% for the benchmarks. The most 1/O-
intensive benchmark, Sort uses only 2.6% of the ethernet bandwidth. This suggests that
10-Mbit Ethernets will be adequate for the new 10-MIPS generation of CPUs, and
perhaps one more generation to follow. After that, higher-performance networks will
become essential.

Ricardo Gusella in an analysis of diskless workstation Ethernet traffic also noticed
that Ethernets are becoming heavily loaded with the introduction of faster machines
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[Gus87]. He measured the traffic on a 10-Mbit Ethernet over a 24 hour period. He
determined that two Sun-3 workstations (a Sun-3/180 server and a Sun-3/50 client each
with 4 Mbytes of memory) running UNIX with Sun’s Network File System (NFS)
[San85] can utilize over 20% of the Ethernet. Since the workstations that Gusella
measured had smaller memories than the Sprite workstations and NES does not utilize
file data caches as effectively as Sprite, I would not expect Sprite to exhibit the same
loads that were measured by Gusella. However, Gusella’s measurements are another
indication that higher-performance networks will be necessary in the near future.

4.3.1.3. Disk Utilization

Figure 4-3 shows the disk utilizations of the benchmarks. For most of the bench-
marks, the disk utilization with a warm cache is less than 6% with or without client
caching. This shows that, for most of the benchmarks, a cache on the server is able to
reduce the disk traffic to reasonable levels.

Sort is the one benchmark that has a fairly high disk utilization without client
caching; with client caching the disk utilization is cut in half. This demonstrates the

70%

60% et e e

50%

40% .'..;....... ..............................................................................................

30%

20% -

B O O N O R0 =T

VYm-make Ditroff

0%

{:_—J No client cache, cold
BEER! No client cache, warm f:} Client cache warm

Client cache, cold

Figure 4-3. Client caching reduces disk utilization by up to a factor of 2 (measured on
Sun-3’s with variable-size client caches).



41

advantage of the 30-second delayed write policy. The Sort benchmark completes in
around 60 seconds. When client caching is used, all writes to disk will be delayed by
30 seconds on the client and 30 seconds on the server. Thus, only the final result will
end up getting written to disk. Without client caching modified data will only be
delayed by 30 seconds; any intermediate files that live longer than 30 seconds will get

written through to disk. If the server were changed to use a 60 second delayed-write

policy, then many of the extra disk writes without client caching would be eliminated.

With warm caches the disk utilization of these benchmarks is up to a factor of two
lower than the CPU utilization. The disk utilization would be even lower if Sprite did a
better job of utilizing the disk bandwidth; currently only one block can be transferred
per disk revolution. Therefore, currently the CPU should saturate before the disk.
However, as CPUs get much faster and disks do not, the disk may become the
bottleneck that will limit system scalability.

4.3.1.4. Contention

In order to measure the effects of loading on the performance of the Sprite file sys-
tem, I ran several versions of the most server-intensive benchmark, Andrew,

Andrew Contention Results
Network Mbytes Server Uil Disk I/Os | Disk Util

Elapsed Time

Number
of No With No With No With No With No With

cli Client | Client | Client Client Client | Client | Client | Client | Client | Client
ents Cache | Cache | Cache Cache Cache | Cache | Cache | Cache | Cache | Cache

307 275 ‘ 23.8 43 18.0% | 12.1% 863 647 6.0% 5.0%

1 6.1 0.0 0.0 00 | oa 00 | 3508 | 17 17 0.0
N 324 | 275 1 417 | 86 | 34.6% | 218% | 1397 | 1141 | 12.0% | 113%
2 26 0.4 06 | 00 | o1 01 | 1900 | 21 1.7 0.6
; 353 | 286 | 717 | 129 | 48.1% | 31.2% l 2401 | 1644 | 193% | 153%
35 17 06 | 00 | 05 o1 | 1925 | 125 | 06 0.6
; 250 | 321 | 1203 | 216 | 657% | 450% | 4360 | 2742 | 302% | 233%
| 23 9.7 0s | oo | o1 04 | 926 | 285 | 04 12
. 5197 | 372 | 1688 | 302 | 743% | 582% | 6146 | 3843 | 38.0% | 307%
22 |83 06 | 00 | 23 03 | 4076 | 484 | 20 0.6
0 753 | 456 | 2459 | 440 | 83.3% | 70.8% | 9935 | 3659 | 50.7% | 42.7%
33 | 153 06 |1 06 | 03 01 641 | 2349 | 06 21

Table 4-5. Andrew contention results. Each row contains two lines of data. The first
line contains the results of running the benchmarks and the second line contains the
standard de